Predicting extreme surges from sparse data using a copula‐based hierarchical Bayesian spatial model
نویسندگان
چکیده
منابع مشابه
Predicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملA Bayesian model for sparse functional data.
We propose a method for analyzing data which consist of curves on multiple individuals, i.e., longitudinal or functional data. We use a Bayesian model where curves are expressed as linear combinations of B-splines with random coefficients. The curves are estimated as posterior means obtained via Markov chain Monte Carlo (MCMC) methods, which automatically select the local level of smoothing. Th...
متن کاملA Hierarchical Max-stable Spatial Model for Extreme Precipitation1
Extreme environmental phenomena such as major precipitation events manifestly exhibit spatial dependence. Max-stable processes are a class of asymptotically-justified models that are capable of representing spatial dependence among extreme values. While these models satisfy modeling requirements, they are limited in their utility because their corresponding joint likelihoods are unknown for mor...
متن کاملA Hierarchical Max-stable Spatial Model for Extreme Precipitation.
Extreme environmental phenomena such as major precipitation events manifestly exhibit spatial dependence. Max-stable processes are a class of asymptotically-justified models that are capable of representing spatial dependence among extreme values. While these models satisfy modeling requirements, they are limited in their utility because their corresponding joint likelihoods are unknown for mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmetrics
سال: 2019
ISSN: 1180-4009,1099-095X
DOI: 10.1002/env.2616